Year 1 Addition			
Objective \& Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part whole model.	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$4+3=7$ $10=6+4$ Use the part-part whole diagram as shown above to move into the abstract It's important children experience the = sign in different places in the calculation.
Starting at the bigger number and counting on	$12+5$ Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. Use Numicon Shapes	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer. Use numicon shapes on a number line (numicon IWB)	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

	Use counters on a number track to count on. 		
	00000000000000000000		
Regrouping to make 10. This is an essential skill for column addition later.	$6+5=11$ Start with the bigger number and use the smaller number to make 10. Use ten frames.	Use a tens frame or a number line. Children to draw the ten frame and counters/cubes Regroup or partition the smaller number using the part part whole model to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now? Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
Represent \& use number bonds and related subtraction facts within 20	2 more than 5 .		Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. . ' 8 is 3 more than 5.'

Year 2 Addition			
 Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten	$50=30+20$ Model using dienes and bead strings Use Numicon shapes on a number line	Use representations for base ten. 3 tene +5 tens $=$ \qquad tens $30+50=$ \qquad Use Numicon shapes on a number line (IWB)	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts Part-part whole	Children explore ways of making numbers within 20 (cubes, objects, numicon) Use balancing scales to find ways of making numbers within 20 with the Numicon shapes.	Use balancing scales to find ways of making numbers within 20 with the Numicon shapes (IWB) $20=13+7$	$\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$

Add a 2 digitnumber and tens	$25+10=35$ Explore that the ones digit does not change	Children can use a number line to count in steps of ten, reinforcing the ones digit does not change.	$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2-digit numbers	A Model using dienes, place value counters and Numicon. $=72$	Use number line and bridge ten using part whole if necessary, starting at the largest number.	Non statutory guidance from NC 'Recording addition and subtraction in columns supports place value and prepares for formal written methods with larger numbers.'

Add
three 1-
digit
digit numbers
$4+7+6=17$
Put 4 and 6 together to make 10. Add on 7.
Encourage the children to use known facts.
Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.

The 4 and the 6 can be grouped together to make 10 . Then add on the 7.

Add together three groups of objects. Draw a picture to recombine the groups to make 10.
$4+7+6=10+7$
10

$$
=17
$$

Combine the two numbers that make 10 and then add on the remainder.

Year 3 Addition			
Objective \& Strategy	Concrete	Pictorial	Abstract
Column Additionno regrouping (friendly numbers) Add two or three 2 or 3- digit numbers.	 Use Dienes to add tens and ones before moving on to place value counters. Modelling the recording of the calculation alongside (building from Yr2) Numicon can be used to show the tens and ones.	After practically using the base 10 blocks and place value counters, children can draw the Dienes to help them to solve addition calculations. Children move to drawing the counters using a tens and one frame.	Calculations $21+42=$ 21 $+\underline{42}$ Only select numbers which do not involve regrouping. $\begin{array}{r} 223 \\ +114 \end{array}$ Add the ones first, then the tens, then the hundreds.

	 Place value arrow cards. Partition each number (Use place value cards to help partition, move the 10s together, move the 1 s together), 2. Add the 10 s and 1 s 3. Recombine the answers to find the total $\begin{aligned} 65+24 & =60+20+5+4 \\ & =80+9 \\ & =89 \end{aligned}$		
Column method regrouping	Add up the units and exchange 10 ones for one 10 and so on. This helps children clearly see that 10 ones equal 1 ten and 10 tens equal 100. Continue using place value counters as children begin to work with decimals.	\because \because \because \ddots 5 1 Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line	$\begin{array}{\|l\|} \hline 20+5 \\ 40+8 \\ \hline 60+13 \end{array}=73$ Start by partitioning the numbers before formal column to show the exchange. $\begin{array}{r} 536 \\ +85 \\ \hline \frac{621}{11} \end{array}$ Carry digits are recorded underneath, using the words 'carry one ten' or 'carry one hundred', not 'carry one'.

Year 1 Subtraction			
Objective \& Strategy	Concrete	Pictorial	Abstract
Taking away ones	Use real-life physical objects, counters, cubes etc. to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $5-2=3$ The bar model can also be used. Q Q®O	$\begin{aligned} & 4=6-2 \\ & 18-3=15 \\ & 8-2=6 \end{aligned}$ Children need to see part whole model in different orientations.
Counting back	Make the larger number in the subtraction calculation. Move the beads along the bead string whilst counting backwards in ones.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help. Children will need regular practice counting backwards.

Represent and use
number bonds and
related subtraction
facts within 20

This step allows children the opportunity to exchange a ten for 10 ones, working with small numbers and understanding the relationship between the tens and ones.	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'		
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping. 34 becomes 3 tens and 4 ones. Then subtract the 13 , always reinforcing we start with the ones column.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$

Yr5-Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal			$\begin{aligned} & { }^{2} 8^{\prime \prime} X^{1} 0{ }^{\circ} \$^{\prime} 6 \\ & -\frac{2128}{2128} \\ & \hline 28,9288 \\ & \begin{array}{l} \text { Use zeros } \\ \text { for place- } \\ \text { holders. } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 31056-2128= \\ & 7169-372.5= \end{aligned}$
Yr6 - Pupils practise subtraction for larger numbers, using the formal written methods of columnar			$\begin{array}{r} \circ{ }^{\prime \prime} 818,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline \begin{array}{r} 815 \cdot 3119 \mathrm{~kg} \\ -\quad 36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array} \\ \hline 6 \end{array}$ for place holders.	$50699-89949=$ $105.419 \mathrm{~kg}-36.08 \mathrm{~kg}=$ hildren can use zeros

Year 1 Multiplication			
Objective \& Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8 \square \square Doubling strategy for six to ten-example 1: - Tens frames and counters:	Partition a number and then double each part before recombining it back together. \| Completing multiplication equations: 'Fill in the missing numbers.' $2 \times 7=\square \quad 7 \times 2=\square$ Double 7 is equal to \square 7, twice is equal to \square We can write twice 6 as $\square \times 6$ double $6=$ \square We can write double 3 as $2 \times$ \square this is the same as \square $\times 2$ double $3=$ \square $4+4+4=12$

			True/false style problems: Tick the examples that represent double four.'
			$4+4$
Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Making equal groups and counting the total		Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$
Repeated addition	$3+3+3$ Use different objects to add equal groups	There are 3 sweets in one bag． How many sweets are in 5 bags altogether？ There are 3 plates．Each plate has 2 star biscuits on．How many biscuits are there？ 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures． $2+2+2+2+2=10$

Understanding arrays	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$

Year 2 Multiplication				
Objective \& Strategy	Concrete	Pictorial		Abstract
Doubling	Model doubling using dienes and PV counters. Double 26 - partition tens and ones. Use ten frames and different coloured counters.	Draw pictures and representations to show how to double numbers.		Partition a number and then double each part before recombining it back together.
		Tens	Ones	
		\square	949494	
			9494948	
			96464 8 64090	

	'Nine is five plus four, so double nine is double five plus double four.' $5+5=10$ $4+4=8$ $10+8=18$ so $9+9=18$ 'Nine is ten minus one, so double nine is double ten minus double one.' $\begin{aligned} & 10+10=20 \\ & 1+1=2 \\ & 20-2=18 \end{aligned}$ so $9+9=18$ Use dienes to model doubling		
Counting in multiples of $2,3,4$, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square

Multiplication is
commutative
Create arrays using counters and cubes and
Numicon.

	3020	$\left\lvert\, \begin{aligned} & 08 \\ & 08 \\ & 0.8 \\ & 08 \\ & 0 . \end{aligned}\right.$	$8008 \bigcirc$	

| | $3 \cdot$ 1 9
 $\times 8$
 25 $\cdot 52$ |
| :--- | :--- | :--- |

Division as sharing
Sharing using a
range of objects.

Year 3 Division				
Objective \& Strategy	Concrete	Pictorial		Abstract
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue division	e bar modelling to aid solving ms. \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24? $24 \div 6=4$
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created.	Draw an into group sentence	and use lines to split the array make multiplication and division	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$ It's important for children to continue to be exposed to the $=$ at the start of the calculation. $\begin{aligned} & 28=7 \times 4 \\ & 28=4 \times 7 \\ & 4=28 \div 7 \\ & 7=28 \div 4 \end{aligned}$

	$15 \div 3=5$ $5 \times 3=15$ $15 \div 5=3$ $3 \times 5=15$		
Division with remainders.	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. $14 \div 3=$ Draw dots and group them to divide an amount and clearly show a remainder. remainder 2	Complete written divisions and show the remainder using r .

Year 4-6 Division			
Objective \& Strategy	Concrete	Pictorial	Abstract
Divide at least 3 digit numbers by 1 digit. Short Division	Use place value counters to divide using the bus stop method alongside.	Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently. Children can represent using base 10 pictorially.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder.

(2)

	Now exchange the 1 remaining ten rod for 10 one cubes. Put the one cubes into groups of 3 . How many groups can you make?			
	Tens	Ones		
	强			

			- "How many 15s are there in 4?" There are none so now ask "how many 15s are there in 43?" - There are 2. Write 2 on the answer line above the 3 and write $30(15 \times 2)$ beneath the 43 . - Subtract 30 from 43 and write the answer (13) beneath the 30 . - Check that your intermediate answer is smaller than the divisor. If the answer is larger than the divisor (e.g. more than 15) then go back and start again as the first division is incorrect. - Now bring down the next figure (2) and place this digit on the end of the intermediate answer. (e.g. 132) - "How many 15 s are there in 132 ?" There are $8(15 \times 8=120)$ Write the 8 on the answer line and write 120 (15×8) beneath 132. - Subtract 120 from 132 and write the answer (12) beneath the 120. - As this answer is smaller than the divisor of 15 then this is the remainder. (28 R 12) Children need to be able to deal with remainders accurately, in context and in a variety of ways (as a remainder, as a fraction and as a decimal) Therefore 28 R 12 should also be explained as 28 12/15 (a '12 out of 15' group which can be simplified to 4/5). As a decimal this can be explained as $\mathbf{2 8 . 8}$ Note

			It's often helpful it children write down the first few multiples of the divisor e.g. $\begin{aligned} & \text { X } 1-15 \\ & \text { X } 2-30 \\ & \times 3-45 \\ & \text { X } 4-60 \\ & \times 5-75 \end{aligned}$ They can then use these multiples to generate others quickly if needed. E.g. 15 $\times 7=(15 \times 3(45)+15 \times 4(60)=105$

